Synthesis and extracellular accumulation of silver nanoparticles by employing radiation-resistant Deinococcus radiodurans, their characterization, and determination of bioactivity
نویسندگان
چکیده
There has been rapid progress in exploring microorganisms for green synthesis of nanoparticles since microbes show extraordinary diversity in terms of species richness and niche localization. Microorganisms are easy to culture using relatively inexpensive and simple nutrients under varied conditions of temperature, pressure, pH, etc. In this work, Deinococcus radiodurans that possesses the ability to withstand extremely high radiation and desiccation stress has been employed for the synthesis of silver nanoparticles (AgNPs). D. radiodurans was able to accumulate AgNPs in medium under various conditions, and process optimization was carried out with respect to time, temperature, pH, and concentration of silver salt. AgNPs were characterized using UV/vis spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy. The microbially synthesized AgNPs exhibited good antimicrobial activity against both Gram-negative and Gram-positive organisms and anti-biofouling activity. Their ability to inhibit growth and proliferation of cancer cell line was also examined, and it could be seen that AgNPs synthesized using D. radiodurans exhibited excellent anticancer activity.
منابع مشابه
Extracellular synthesis, characterization and antibacterial activity of Silver nanoparticles by Actinomycetes isolative
The development of the eco friendly procedures makes nanoparticles as the rapidly growing field of nanotechnology. Amongst, the silver nanoparticles have become prominent in the field of medicine to their peculiar antimicrobial properties. In the present study we suggest an eco friendly procedure of extracellular synthesis of silver nanoparticles with an average sizes of 5-50nm using an Act...
متن کاملExtracellular synthesis, characterization and antibacterial activity of Silver nanoparticles by Actinomycetes isolative
The development of the eco friendly procedures makes nanoparticles as the rapidly growing field of nanotechnology. Amongst, the silver nanoparticles have become prominent in the field of medicine to their peculiar antimicrobial properties. In the present study we suggest an eco friendly procedure of extracellular synthesis of silver nanoparticles with an average sizes of 5-50nm using an Act...
متن کاملIsolation and Study of S-layer Nanostructure of Deinococcus Radiodurans R1
Crystalline surface layer proteins (S-layer proteins) have considerable potential for the crystalline arrays in biotechnology, biomimetics and nonlife applications, including areas such as microelectronics and molecular nanotechnology. The extensive application potential of surface layers in nanobiotechnology is according to the particular inherent attributes of the single molecular arrays cons...
متن کاملGreen synthesis of silver nanoparticles: Another honor for the yeast model Saccharomyces cerevisiae
Background and Purpose: Microorganism-based synthesis of nanostructures has recently been noted as a green method for the sustainable development of nanotechnology. Nowadays, there have been numerous studies on the emerging resistant pathogenic bacteria and fungal isolates, the probable inability of bacteria and fungi to develop resistance against silver nanoparticles’ (SNPs) antibacte...
متن کاملFunctional characterization of a DNA repair polymerase from a radiation resistant bacterium, Deinococcus radiodurans
Cells exposed to DNA damaging agents, produce different types of structural changes in the chromosome. Repair of these lesions requires synthesis of new DNA molecules, catalysed by specific DNA polymerases. A putative DNA polymerase has been characterized, for its role in DNA damage repair and radiation resistance in D. radiodurans, a bacterium best known for its extraordinary resistance to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015